TERPENOIDS AND BIBENZYLS OF 25 LIVERWORT FRULLANIA SPECIES*

YOSHINORI ASAKAWA, REIKO MATSUDA, MASAO TOYOTA, SHINSKE HATTORI† and GUY OURISSON!

Institute of Pharmacognosy, Tokushima Bunri University, Yamashiro-cho, 770 Tokushima, Japan; †The Hattori Botanical Laboratory, Nichinan, 889-25 Miyazaki, Japan; ‡Centre de Neurochimie, Université Louis Pasteur, 5, rue Blaise Pascal, 67084 Strasbourg, France

(Received 16 March 1981)

Key Word Index—Jungermanniales; Hepaticae; sesquiterpene lactones; bibenzyls; cyclocolorenone; mono- and sesquiterpene hydrocarbons; normal- and *ent*-sesquiterpenes; allergy; chemotypes; chemosystematics.

Abstract—Twenty-five Frullania species (liverworts) were chemically investigated. Fourteen species produce allergy-inducing sesquiterpene lactones. Eighteen species contain bibenzyls. The sesquiterpene lactones and bibenzyls are obtained as the major components and they are valuable chemosystematic markers of Frullania species. On the basis of their chemical constituents, Frullania species can be divided into five chemotypes: sesquiterpene lactone—bibenzyl type; sesquiterpene lactone type; bibenzyl type; monoterpene type and cyclocolorenone type.

INTRODUCTION

The chemical analyses of 169 species of Japanese, European and South American liverworts have shown that members of the Hepaticae contain components are of chemosystematic value Frullaniaceae belong to the Jungermanniales and more than 1000 species are known in the world; from Japan 40 species are recorded. Frullania species are very interesting from the viewpoint of medicinal chemistry since they are a rich source of sesquiterpene lactones which can produce intense allergenic contact dermatitis [13-15], antitumoral and plant growth regulatory activity [16]. In the present paper, we report the distribution of terpenoids, bibenzyls and sterols in 25 Frullania species and discuss some aspects of the chemosystematics of Frullaniaceae.

RESULTS AND DISCUSSION

Each Frullania, after being air-dried and ground, was extracted with ether. The crude extracts were monitored by TLC and GC to check whether or not each species contains major components useful as chemical markers. The crude extracts were also directly analysed by GC/MS. The mass spectra obtained by a computerized GC/MS were identified by direct comparison with those of authentic samples and/or published information. The main components were further isolated by a combination of column chromatography, preparative TLC and preparative GC and their chemical structures were confirmed by spectral evidence and some chemical degradation. Table 1 summarizes the distribution of terpenoids, bibenzyls and sterols in each species. Tables 2-5 show the sesquiterpene lactones, sesquiterpene hydrocarbons, ketone, alcohols, bibenzyls and monoterpenes isolated or detected in each Frullania species. By

their chemical constitution, Frullania species fit into five chemotypes (see Table 1). The crude extracts of types I and II showed characteristic intense blue or pale red spots on TLC after 30% H₂SO₄ was sprayed and the plate heated at 100°. Types III-V did not show such characteristic colours. The IR spectra of the crude extracts belonging to types I and II indicated the presence of an absorption band at 1750-1770 cm⁻¹, assignable to a lactone group. On the other hand, the above absorption band did not appear in the crude extracts belonging to types III-V. This suggested that types I and II may contain lactones, revealed by aqueous H₂SO₄. Indeed, various sesquiterpene lactones were isolated or detected in types I and II. Each sesquiterpene lactone isolated from types I and II showed the above characteristic intense colour on TLC [17]. For example, costunolide (1), 4-epiarbusculin A (6) and (+)- and (-)-frullanolides (7) gave deep blue spots. The sesquiterpene lactones (2-5, 8, 9, 12-18) gave pale red colours and then gradually turned to brown. Thus, TLC is a valuable method for recognizing the presence of sesquiterpene lactones.

The allergenic sesquiterpene lactone (-)-frullanolide (7) has been isolated from European F. tamarisci together with costunolide (1) and cyclocostunolides (3, 5) [13–15, 18]. F. tamarisci subsp. obscura grown in Japan is morphologically quite similar to F. tamarisci. F. tamarisci subsp. obscura elaborates 4-epi-arbusculin A (= 4-hydroxycyclocostunolide) (6) and eudesmanal (27) as major components [19]. However, frullanolide (7), dihydrofrullanolide (8) and α - and γ -cyclocostunolides (3, 5) have not been detected in any specimens of F. tamarisci subsp. obscura collected in Hokkaido, Honshu, Shikoku and Kyushu at different times. Thus, the chemical constitution of F. tamarisci subsp. obscura is different from that of European F. tamarisci, although both taxa produce sesquiterpene lactones.

F. dilatata var. anomala, which is morphologically quite close to F. dilatata, produces (+)-frullanolide

^{*}Part 10 in the series "Chemosystematics of Bryophytes". For Part 9, see (1981) *Phytochemistry* (to be submitted).

2188 Y. Asakawa et al.

Table 1. Five chemotypes of Frullania species

	Frullaniaceae			Chemical	constituents		
Types	Species	M*	S*	SL*	D*	B*	St*
I	F. densiloba	+†	+	++++	++	+	+++
	F. dilatata	+	++	+++++		+	+
	F. dilatata var. anomala	+	+	+++++		+	+
	F. osumiensis		+++	+++++		+++	+
	F. parvistipula		+	+++++		++++	+
	F. tamarisci	+	+++	+++++		+	+
	F. tamarisci subsp. obscura		++++	+++++		+	+
	F. usamiensis	+	++++	+++++		+	+
	F. yunnanensis	+	++	+++++		+	+
II	F. hamatiloba	+++	++	+++	+ + +		+
	F. inflata	+	+	+			+++
	F. motoyana		++	++	+++		+
	F. ramuligera		++	+++++			+
	F. vethii		+++	+++++			+
Ш	F. amplicrania		++		++	++++	+
	F. bonincola		+			+++	+
	F. brittoniae subsp. truncatifolia		+			+++++	+
	F. davurica		+++++			+++++	+
	F. ericoides		+		+	++++++	+
	F. hampaena		+			++++++	+
	F. monocera		+			+++	+
	F. pedicellata		++++		++++	++	+
	F. taradakensis		++		+++++	+++++	+
IV	F. fragilifolia	+++++	+				+
V	F. diversitexta		+++++		++		+

^{*}M—monoterpenes; S—sesquiterpenes except sesquiterpene lactones; SL—sesquiterpene lactones; D—diterpenes; B—bibenzyls; St—sterols (campesterol, stigmasterol; sitosterol).

Table 2. Sesquiterpene lactones of Frullania species*

Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
F. brotheri									+	+	+							
F. densiloba							+	+										
F. dilatata [20]					+		+	+				+	+	+				+
F. dilatata var. anomala	+		+		+		+	+										•
F. inflata	+	+																
F. nisquallensis [14]							+											
F. osumiensis			+		+		+											
F. parvistipula													+	+				
F. ramuligera	+	+							+	+								
F. tamarisci [13, 18]	+		+		+		+											
F. tamarisci subsp. [19]																		
obscura	+			+		+												
F. usamiensis				+	+												+	
F. vethii															+	+	'	
F. yunnanensis							+	+								,		

^{*}F. hamatiloba and F. motoyana contain a few unidentified sesquiterpene lactones (see Table 1).

[†]The symbols +, + + + + + etc. are relative concentrations estimated by GC/MS.

Table 3. Sesquiterpene hydrocarbons, ketone, aldehyde and alcohol of Frullania species*

Species	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
F. amplicrania		+					+								+						
F. densiloba			+								+										
F. dilatata							+†	+†		+	+										
F. dilatata var. anomala				+																	
F. diversitexta			+									+	+								
F. davurica		+			+	+				+	+				+		+	+	+		
F. ericoides	+														+						
F. hamatiloba	+											+			+						
F. hampeana	+	+													+					+	
F. inflata				+												+					
F. kagoshimensis						+					+			+	+						
F. monocera	+														+					+	
F. motoyana							+	+													
F. osumiensis										+					+	+				+	
F. parvistipula							+								+						
F. pedicellata											+			+				+			+
F. ramuligera				+								+			+						
F. tamarisci							+	+		+											
F. tamarisci subsp. obscura		+		+			+	+	+	+											
F. taradakensis				+			•			+					+			+			
F. usamiensis											+	+			-			•			
F. vethii							+	+				•			+						

^{*} F. bonincola, F. brittoniae subsp. truncatifolia and F. fragilifolia contain several unidentified sesquiterpene hydrocarbons and alcohols.

Table 4. Bibenzyls and flavone of Frullania species*

Species	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
F. amplicrania						+	+								
F. brittoniae subsp. truncatifolia											+	+			
F. bonincola	+					+				+					
F. dilatata	+	[22]		+	[22]										
F. dilatata var. anomala		+													+
F. davurica		+	+		+										
F. ericoides						+			+						
F. osumiensis						+									
F. parvistipula						+		+	+		+	+	+		
F. pedicellata		+													
F. tamarisci	+	[22]		+	[22]										
F. tamarisci subsp. obscura		+													
F. usamiensis		+													
F. vethii														+	

^{*} F. densiloba, F. hampeana, F. monocera and F. taradekensis contains a few unidentified highly oxygenated bibenzyls (see Table 1).

(enantiomer of 7), (+)-dihydrofrullanolide (enantiomer of 8), α - and β -cyclocostunolides (3, 5) and costunolide (1). The compounds (1, 3, 5) were detected only by TLC and GC/MS. From *F. dilatata*, the same eudesmanolides (5, 7, 8) isolated from *F. dilatata* var. anomala, oxyfrullanolide (12) and two eremophilanolides (13, 14) have been isolated together with cis- β -cyclocostunolide (18) [13, 20]. Among them, (+)-frullanolide and (+)-eremophilanolide were obtained as the major components. However, neither eremophilanolides nor cis- β -

cyclocostunolide were detected in *F. dilatata* var. anomala even by GC/MS. Thus, chemical differences were also clearly seen between *F. dilatata* and its subspecies.

A miniature Frullania species, F. parvistipula, is chemically similar to European F. dilatata since the former species elaborates the unique eremophilanolides (13, 14), although the constitution of bibenzyls is different (see later).

Indian F. yunnanensis, Japanese F. densiloba, F. osumiensis and American F. nisquallensis [14] are

[†] Enantiomers of 25 and 26.

2190 Y. Asakawa et al.

Table 5. Monoterpenes of Frullania species

Species	55	56	57	58	59	60	61	62
F. amplicrania			+	-,-,-				
F. dilatata	+	+	+	+				
F. dilatata var. anomala			+					
F. diversitexta	+	+	+					
F. davurica	+	+	+					
F. fragilifolia*		+	+	+	+	+	+	
F. hamatiloba	+			+	+	+	+	
F. inflata			+					
F. pedicellata	+	+	+			+		+
F. tamarisci [32]	+	+	+	+				+
F. tamarisci subsp. obscura	+	+	+			+	+	
F. usamiensis	+	+	+					
F. yunnanensis	+	+	+					

*The species contains a large amount of an unidentified monoterpene acetate (M⁺ 194).

chemically quite similar to European F. tamarisci, since they produce (-)-frullanolide (7) as the major component. (+)- β -Frullanolide (9), a double-bond isomer of (+)-frullanolide, and its dihydro derivative (10), and brothenolide (11) were found in F. ramuligera. The

lactone (9) and the cyclopropanoid eudesmanolide (11) have recently been isolated from F. brotheri [21]. Thus, these two species have identical sesquiterpene lactones. Chemically speaking, F. inflata may be more primitive than the other Frullania species belonging to types I and II since it elaborates only two germacranolides (1, 2) which are the key precursors to eudesmanolides and guaianolides found in Frullania species classified in types I and II.

F. usamiensis contains β -cyclocostunolide (4) and γ -cyclocostunolide (5) as major components; however, 6,7-cis-eudesmanolides, 7,8-cis-eremophilanolides and 4 β -hydroxycyclocostunolide have not been detected. In this respect, F. usamiensis differs from F. tamarisci subsp. obscura and the Frullania species which produce frullanolide (7) and γ -cyclocostunolide (5).

F. vethii produces guaianolides (15, 16) which have not been detected in the other Frullania species so far examined. Thus, F. vethii is an isolated species in Frullania. This fact is further supported by the presence of a large quantity of a free flavone, apigenin 7,4'-dimethyl ether, in this species (see later).

In North America and Europe, it has been known that some occupational allergies are associated with handling wood upon which epiphytic liverworts grow [13]. The vectors of this allergy were the sesquiterpene lactones (e.g. 1, 3–7, 9, 11–13, 15, 18) possessing an α -methylene- γ -butyrolactone, contained in Frullania tamarisci [13], F. nisquallensis [14] and F. dilatata [20]. If patients sensitive

to the above Frullania touch the remaining Frullania species which contain sesquiterpene lactones, intense allergy will be induced because they produce the same allergenic α -methylene- γ -butyrolactones as those found in F. tamarisci, F. nisquallenisis and F. dilatata, or very similar potentially allergenic sesquiterpene lactones. The isomeric 6,7-cis- and trans-eudesmanolides and 7,8-cis-eremophilanolides have not detected in any other liverworts. Thus we can use them as chemosystematic markers of Frullania species.

In the course of the investigation of the sesquiterpene lactones of Frullania, we confirmed that some Frullania species elaborated various simple bibenzyl derivatives as major components. Tables 1 and 4 show the species which produce bibenzyls. As seen in Table 1, some species producing sesquiterpene lactones contain bibenzyls as minor component. These species are classified as type I. Type II produce a large quantity of sesquiterpene lactones but no bibenzyls. As major components, bibenzyls have been found in Frullania species which do not elaborate

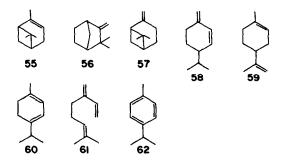
any sesquiterpene lactones. These species belong to type III

The simplest bibenzyl isolated is 3-methoxybibenzyl (54) from F. dilatata var. anomala. 3-Methoxy-4'-hydroxybibenzyl (41) and 3,4-methylenedioxy-3'-methoxybibenzyl (45) are distributed in five species. Lunularic acid (43), an endogenous growth regulator, and its decarboxylated compound, lunularin (40), have been isolated from F. dilatata and F. tamarisci [22].

F. parvistipula belonging to type I contains several highly substituted bibenzyls, two of which have been isolated from F. brittoniae ssp. truncatifolia (type III) [23]. F. parvistipula is similar to F. brittoniae ssp. truncatifolia from the standpoint of bibenzyl constitution; however, the latter species elaborates no sesquiterpene lactones.

F. vethii produces a large quantity of 5-hydroxy-7,4'-dimethoxyflavone (53) along with guaianolides (15, 16); however, no bibenzyls have been detected even by GC/MS. Lunularin (40) and lunularic acid (43) are widespread in Hepaticae [22]. However, except the above

Y. Asakawa et al.


two bibenzyls (40, 43), and bibenzyls (44, 45), the remaining bibenzyls listed in Table 4 were newly isolated or detected. As can be seen in Tables 1 and 4, the present bibenzyls are also valuable chemical markers of *Frullania* species.

There are two more chemotypes of Frullania species which are chemically quite isolated. F. fragilifolia grown in Europe produces a large amount of monoterpene hydrocarbons and an unknown monoterpene acetate. This species does not contain any sesquiterpene lactones and bibenzyls. Such a species is classified as type IV.

F. diversitexta produces a large amount of (+)-cyclocolorenone (21), an ent-aromadendrane-type sesquiterpene ketone, together with a few diterpene acetates. (+)-Cyclocolorenone (21) is the main component of several Porella species belonging to Porellaceae (Jungermanniales) [24-27]. Some Frullania species are morphologically close to Porella species. Chemically, F. diversitexta is rather similar to Porella vernicosa complex, although the former species does not contain the intense pungent drimane-type sesquiterpene dial, which is one of the important chemosystematic markers of the P. vernicosa complex [24-27]. GC/MS showed that neither sesquiterpene lactones nor bibenzyls were present in F. diversitexta. Thus, F. diversitexta is isolated as type V. F. densiloba also contains

cyclocolorenone (21); however, its content is negligible and the major components are the eudesmanolides. Hence, F. densiloba is chemically closer to F. tamarisci.

In addition to the sesquiterpene lactones, bibenzyls and cyclocolorenone indicated above, most Frullania species produce many sesquiterpene hydrocarbons and alcohols. Table 3 shows the components so far found in Frullania species. β -Caryophyllene (33) is the most widespread sesquiterpene hydrocarbon in Frullania species. β -Elemene (22), α -selinene (25), β -selinene (26), γ -cadinene (28) and α -copaene (29) are also distributed in the several species. F. davurica (type III) produces a large amount of bibenzyl (41) and sesquiterpene hydrocarbons in which eight known compounds have been detected, the major one being β -caryophyllene (33). F. hampeana, F. monocera and F. osumiensis produce a drimane-type sesquiterpene alcohol, drimenol (38). F. tamarisci and its subspecies produce α - and β -selinenes (25, 26). The same hydrocarbons have been isolated from F. dilatata. However, their absolute configurations are opposite. The same phenomenon has been discussed in sesquiterpene lactones, (+)- and (-)-frullanolides (7, 8). Except for the presence of (+)-cyclocolorenone (21) in F. diversitexta and β -caryophyllene (33) in the other species, it is somewhat difficult to use these sesquiterpene hydrocarbons or alcohols as chemosystematic markers of

Frullania species, since most other liverworts elaborate the same sesquiterpene hydrocarbons and alcohols.

Some fresh Frullania species emit a pine-needle-like odour when they are crushed or ground. The GC/MS of the crude extracts showed that some species contained monoterpene hydrocarbons. Table 5 shows the species containing monoterpenes. Monoterpene hydrocarbons are present in 13 of 25 Frullania species. Most of the species contains α - and β -pinenes (55, 56) and camphene (56). F. hamatiloba contains the same monoterpenes as those found in European F. fragilifolia. However, the other chemical constitution of the two species is completely different. It is difficult to use monoterpene hydrocarbons as chemical markers of Frullania species because they are volatile and variable, according to whether fresh or dried tissues are examined.

The liverworts so far examined in our laboratory contain phytosterols (campesterol, stigmasterol and sitosterol). This is true in *Frullania* species (Table 1) although the concentration of three sterols are irregular. In eight *Frullania* species, some diterpenes have been isolated. These include a few diterpene acetates whose structures remain to be clarified.

It is interesting from the standpoint of biogenesis that Frullania species elaborate normal or ent-sesquiterpenes. It is known that most of the liverworts produce sesquiterpenoids enantiomeric to those found in higher plants [28-31], with several exceptions. As far as we are aware, it is the first instance that either normal or enantiomeric sesquiterpenoids have been found in different species in the same genus, not only in the Hepaticae but also in more highly evolved plants. It is also interesting that sesquiterpene hydrocarbons and ketones as well as the sesquiterpene lactones found in the spore-forming Frullania species are the same or quite similar to those found in the highly evolved Compositae.

The present paper indicated the chemical constituents of only 2.5% of the total Frullania species. It is possible that other significant chemical properties will be found in the remaining Frullania species. Chemical study of the metabolites by a computerized GC/MS, TLC and GC may lead to a better understanding of the taxonomy of Frullania species and of the evolutional interrelationship between Frullaniaceae, Porellaceae and Lejeuneaceae.

EXPERIMENTAL

GC/MS, TLC, GC, prep. TLC and prep. GC were carried out as indicated earlier [6].

Plant materials. All Frullania species identified by S.H., G.O., Y.A., Drs. M. Mizutani, C. Suire, K. Yamada and S. Huneck were deposited in the Herbarium, The Hattori Botanical Laboratory, Miyazaki, Japan and Institute of Pharmacognosy, Tokushima

Bunri University. The plant materials were collected in the following locations and months.

Frullania amplicrania Steph.: Yamatake, Nichinan, Miyazaki, Japan, Dec. 1978; Izu, Miyake Island, Japan, Dec. 1978. F. brittoniae subsp. truncatifolia (Steph.) Schust. & Hatt.: Yamatake, Nichinan, Miyazaki, Japan, Dec. 1978. F. davurica Hampe: Kainan-cho, Kaifu-gun, Tokushima, Japan, April 1978; Urago-cho, Hidaka-gun, Hokkaodo, Japan, July 1978, Katsuura-cho, Katsuura-gun, Tokushima, Japan, May, 1979; Eba-mura, Yazu-gun, Tottori, Japan, Oct. 1979. F. densiloba Evans: Yamatake, Nichinan, Miyazaki, Japan, Dec. 1978. F. dilatata (L.) Dum.: Allas, Dordogne, France, April 1978, Nov. 1978. F. dilatata (L.) Dum. var. anomala Corb.: near Varna, Black Sea, Bulgaria, Sept. 1978. F. diversitexta Steph.: Yamatake, Nichinan, Miyazaki, Japan, Dec. 1978; Inohae Valley, Minaminaka-mura, Miyazaki, Japan, Feb. 1979. F. ericoides (Nees) Mont.: Kochi-Castle, Kochi-shi, Kochi, Japan, Aug. 1978; Yada-cho, Tokushimashi, Japan, April 1978. F. fragilifolia (Tayl.) Gott. et al.: Sewen, Haut-Rhin, France, Sept. 1979. F. hampeana Nees: Great Shrine of Ise, Ise-shi, Mie, Japan, Jan. 1979. F. inflata Gott.: Kouraibiro, Ise-shi, Mie, Japan, Jan. 1979. F. kagoshimensis Steph.: Yamatake, Nichinan, Miyazaki, Japan, Dec. 1978; Hachinosu, Nichinan, Miyazaki, Japan, Dec. 1978, Minaminaka-gun, Miyazaki, Japan, Feb. 1979. F. monocera Steph.: Ise-shi, Mie, Japan, June, 1978. F. motoyana Steph.: Yamatake, Nichinan, Moyazaki, Japan, Dec. 1978; Ise-shi, Mie, Japan, Jan. 1979. F. osumiensis (Hatt.) Hatt.: Inohae ravine, Nichinan, Miyazaki, Japan, Dec. 1978. F. parvistipula Steph.: Amanohashidate, Kyoto, Japan, March 1979. F. pedicellata Steph.: Ootsubo, Nikenya, Tokushima, Japan, Dec. 1978; Hachinosu, Nichinan, Miyazaki, Japan. Dec. 1978; Izu, Miyake Island, Japan, Dec. 1978. F. ramuligera (Nees) Mont.: Inohae and Inotani, Nichinan, Miyazaki, Japan, Dec. 1978. F. tamarisci (L. Dum.: Cote de Jor, Dordogne, France, April 1978, Creux de l'Anvers, Jura, France, Aug. 1979. F. tamarisci subsp. obscura (Verd.) Hatt.: Arataniyama, Numata-cho, Hiroshima, Japan, Mar. 1975; Koyu-gun, Miyazaki, Japan, Feb. 1976; Kizawa-son, Naka-gun Tokushima, Japan, June 1977; Urago-cho, Hidakagun, Hokkaido, Japan, July, 1978; Tengukogen, Yamadanimura, Kamiukenagun, Ehime, Japan, Aug. 1978; Monobe-mura, Kami-gun, Kochi, Japan, Aug. 1978; Yamatake, Nichanan, Miyazaki, Japan, Dec. 1978; Kamikatsu-cho, Katsuura-gun, Tokushima, Japan, May, 1979; Kito-cho, Naka-gun, Tokushima, Japan, Sept. 1980. F. taradakensis Steph.: Kizawason, Naka-gun, Tokushima, Japan, Dec. 1978, Kamikatsu-cho, Katsuura-gun, Tokushima, Japan, May, 1979. F. usamiensis Steph.: Tengukogen, Yamadani-mura, Kamiukena-gun, Ehime, Japan, Aug. 1978; Izu, Miyake Island, Japan, Jan. 1979. F. vethii Sande Lacoste: Inohae, Nichinan, Miyazaki, Japan, Nov. 1978. F. yunnanensis Steph.: Darjeeling, India, June, 1976. F. bonicola Hatt.: Hahajima Island, Mt. Chibusa, Japan, Aug. 1980.

Extraction and isolation of terpenoids, bibenzyls and sterols. Each Frullania species (250–1250 g) after being air-dried for 5 days was ground and ground material (250–500 mg) was extrd with ether (10 ml). The green extract was filtered through a short column packed with Si gel (230–400 mesh) and the solvent was evapd in vacuo at 25°. After the green oils were monitored by TLC (sprayed by 30% $\rm H_2SO_4$ and heated at 100°) and by GC, they were directly analysed by a computerized GC/MS apparatus. The remaining ground materials were also extrd with Et₂O for 2 weeks and then re-extrd with the same solvent for 2 weeks. The two extracts were combined and the crude oils were chromatographed on Si gel and/or Sephadex LH-20 using n-hexane–EtOAc, $\rm C_6H_6$ –EtOAc gradient or MeOH–CHCl₃ (1:1) as eluants. The chemical structures of the isolated compounds were established by the combination of the spectral data (UV, IR, ¹H NMR, ¹³C NMR

2194 Y. ASAKAWA et al.

and MS) and the chemical degradation [20]. The structural elucidation of bibenzyls (41, 42, 45, 47-50) and their syntheses will be reported elsewhere.

Acknowledgements—We thank Drs. M. Mizutani and Z. Iwatsuki of The Hattori Botanical Laboratory, Miyazaki, Japan; Dr. C. Suire of Université de Bordeaux 1; Dr. K. Yamada of Uji Yamada High School, Mie, Japan; Prof. P. N. Mehra of Panjab University, India and Dr. S. Huneck of Institut für Biochemie der Pflanzen des Forschungszentrums für Molekularbiologie und Medizin der Akademie der Wissenschaften der DDR for their collection and identification of several Frullania species and useful suggestions.

REFERENCES

- Asakawa, Y., Tokunaga, N., Toyota, M., Takemoto, T. and Suire, C. (1979) J. Hattori Bot. Lab. 45, 395.
- Asakawa, Y., Tokunaga, N., Toyota, M., Takemoto, T., Hattori, S., Mizutani, M. and Suire, C. (1979) J. Hattori Bot. Lab. 46, 67.
- 3. Asakawa, Y., Hattori, S., Mizutani, M., Tokunaga, N. and Takemoto, T. (1979) J. Hattori Bot. Lab. 46, 77.
- Asakawa, Y., Tokunaga, N., Takemoto, T., Hattori, S., Mizutani, M. and Suire, C. (1980) J. Hattori Bot. Lab. 47, 153.
- Asakawa, Y., Suire, C., Toyota, M., Tokunaga, N., Takemoto, T., Hattori, S. and Mizutani, M. (1980) J. Hattori Bot. Lab. 48, 285.
- Asakawa, Y., Inoue, H., Toyota, M. and Takemoto, T. (1980) Phytochemistry 19, 2623.
- Asakawa, Y., Matsuda, R., Takemoto, T., Hattori, S., Mizutani, M., Inoue, H., Suire, C. and Huneck, S. (1981) J. Hattori Bot. Lab. 50, (in press).
- 8. Asakawa, Y., Toyota, M., Takeda, R., Suire, C. and Takemoto, T. (1981) Phytochemistry (in press).
- Asakawa, Y., Matsuda, R., Toyota, M., Suire, C., Takemoto, T., Inoue, H., Hattori, S. and Mizutani, M. (1981) J. Hattori Bot. Lab. (in press).
- Gradstein, S. R., Matsuda, R. and Asakawa, Y. (1981) J. Hattori Bot. Lab. (in press).

- Inoue, H., Asakawa, Y. and Gradstein, S. R. (1981) Bull. Nat. Sci. Mus. Ser. B. (in press).
- 12. Asakawa, Y., Toyota, M., Takemoto, T. and Mues, R. (1981) *Phytochemistry* (to be submitted).
- Knoche, H., Ourisson, G., Perold, G. W., Foussereau, J. and Maleville (1969) Science 166, 239.
- Mitchell, J. C., Fritig, B., Singh, B. and Towers, G. H. N. J. Invest. Dermatol. 54, 233.
- Perold, G. W., Muller, J.-C. and Ourisson, G. (1972) Tetrahedron 28, 5797.
- Asakawa, Y., Toyota, M. Takemoto, T., Fujiki, H. and Sugimura, T. Planta Med. 39, 233.
- Shafizadeh, F., Bhadane, N. R., Morris, M. S., Kelsey, R. G. and Khanna, S. N. (1971) Phytochemistry 10, 2745.
- Connolly, J. D. and Thornton, I. M. S. (1973) Phytochemistry 12, 631.
- Asakawa, Y., Ourisson, G. and Aratani, T. (1975) Tetrahedron Letters 3957.
- Asakawa, Y., Muller, J.-C., Ourisson, G., Foussereau, J. and Ducombs, G. (1976) Bull. Soc. Chim. Fr. 1465.
- 21. Takeda, R., Ohta, Y. and Hirose, Y. (1980) Chemistry Letters
- 22. Gorham, J. (1977) Phytochemistry 16, 249.
- Asakawa, Y., Tanikawa, K. and Aratani, T. (1976) Phytochemistry 15, 1057.
- 24. Asakawa, Y. and Aratani, T. (1976) Bull. Soc. Chim. Fr. 1469.
- Asakawa, Y., Toyota, M., Uemoto, M. and Aratani, T. (1976) Phytochemistry 15, 1929.
- Asakawa, Y., Toyota, M. and Takemoto, T. (1978) Phytochemistry 17, 457.
- Asakawa, Y., Huneck, S., Toyota, M., Takemoto, T. and Suire, C. (1979) J. Hattori Bot. Lab. 46, 163.
- 28. Huneck, S. and Klein, E. (1967) Phytochemistry 6, 383.
- Matsuo, M., Nakayama, M., Maeda, T., Noda, Y. and Hayashi, S. (1975) Phytochemistry 14, 1037.
- 30. Matsuo, A., Nakayama, M. and Hayashi, S. (1973) Chemistry Letters 769.
- Andersen, N, H., Bissinette, P., Liu, C.-B., Schunk, B., Ohta,
 Y., Tseng, C. W., Moore, A. and Huneck, S. (1977)
 Phytochemistry 16, 1731.
- 32. Suire, C. and Bourgeois, G. (1977) Phytochemistry 16, 284.